1 M ay 2 00 9 Dimer models and the special McKay correspondence Akira

نویسنده

  • Kazushi Ueda
چکیده

Dimer models are introduced by string theorists (see e.g. [11, 12, 13, 16, 17, 18]) to study supersymmetric quiver gauge theories in four dimensions. A dimer model is a bicolored graph on a 2-torus encoding the information of a quiver with relations. If a dimer model is non-degenerate, then the moduli space Mθ of stable representations of the quiver with dimension vector (1, . . . , 1) with respect to a generic stability parameter θ in the sense of King [23] is a smooth toric Calabi-Yau 3-fold [20]. The convex hull of one-dimensional cones of the fan describing this toric manifold is a lattice polygon described in purely combinatorial way using perfect matchings. Although the structure of the fan is not determined by this lattice polygon, any fan structure gives an equivalent derived categories of coherent sheaves [1, 3]. In this paper, we study the behavior of the dimer model under the operation of removing a vertex from the lattice polygon and taking the convex hull of the rest. This generalizes the work of Gulotta [15] where he studies the operation of removing a triangle from the lattice polygon, and the special McKay correspondence plays an essential role in this generalization. The main result in this paper is the following:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 M ay 2 00 5 Exact solution of the spin - 1 / 2 Ising model on the Shastry - Sutherland ( orthogonal - dimer ) lattice ⋆

A star-triangle mapping transformation is used to establish an exact correspondence between the spin-1/2 Ising model on the Shastry-Sutherland (orthogonal-dimer) lattice and respectively, the spin-1/2 Ising model on a bathroom tile (4-8) lattice. Exact results for the critical temperature and spontaneous magnetization are obtained and compared with corresponding results on the regular Ising lat...

متن کامل

ar X iv : m at h / 02 05 20 7 v 1 [ m at h . R T ] 1 9 M ay 2 00 2 Can p - adic integrals be computed ?

This article gives an introduction to arithmetic motivic integration in the context of p-adic integrals that arise in representation theory. A special case of the fundamental lemma is interpreted as an identity of Chow motives.

متن کامل

ar X iv : 1 20 5 . 62 53 v 1 [ qu an t - ph ] 2 9 M ay 2 01 2 Teleportation of Nonclassical Wave Packets of light

Noriyuki Lee, Hugo Benichi, Yuishi Takeno, Shuntaro Takeda, James Webb, Elanor Huntington and Akira Furusawa1∗ Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Centre for Quantum Computation and Communication Technology, School of Engineering and Information Technology, University College, The University of New South Wa...

متن کامل

On Moduli Spaces of Quiver Representations Associated with Dimer Models

Dimer models are introduced by string theorists to study four-dimensional N = 1 superconformal field theories. See e.g. a review by Kennaway [5] and references therein for a physical background. A dimer model is a bipartite graph on a real two-torus which encodes the information of a quiver with relations. A typical example of such a quiver is the McKay quiver determined by a finite abelian sub...

متن کامل

ar X iv : m at h - ph / 0 60 50 74 v 1 2 9 M ay 2 00 6 BRYANT - SALAMON ’ S G 2 - MANIFOLDS AND THE HYPERSURFACE GEOMETRY

We show that two of Bryant-Salamon’s G2-manifolds have a simple topology, S \ S or S \ CP . In this connection, we show there exists a complete Ricci-flat (non-flat) metric on Sn \ Sm for some n − 1 > m. We also give many examples of special Lagrangian submanifolds of T ∗Sn with the Stenzel metric. The hypersurface geometry is essential in the argument.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009